General Classification of SONOREACTORS

We have a number of options to address flow-through Sonochemistry. As you can see there are many elements we can use in our chamber designs. We can offer complete systems built for your needs or for clients with the capability to construct the chamber parts we may also consider selling just the ultrasonic components.

In addition to some standard components you will find that we are offering some very unique technology. For example if you decide on the very high surface power density probe solution please note that ours is the highest power system available. None of the leading industry brands are offering the same level of power output to the liquid. This is very important for some Sonochemical testing where you need to test low power as well as very high power.

Our Pipe-Clamp solution is a technology that will only function with our MMM generators. We can design clamps to fit nearly any size pipe and drive 1 to 5 converters and clamp assemblies from one generator.

SONOREACTORS Group A: HVPD

-High volumetric (typically 5 to 50 W/dm³) and low surface power density (typically 0.5 to 2 W/cm²)
-Large radiating surface/s (transducer arrays)
-Moderate or high volume-power-density: HVPD
-Multifrequency and single frequency systems

SONOREACTORS Group B: HSPD

-High surface-power-density of ultrasonic radiation: HSPD Typically 100 W/cm² or higher (until 500 W/cm²) -Small radiating surface (and very high intensity of radiation) -Single frequency systems -Single-Probe Systems

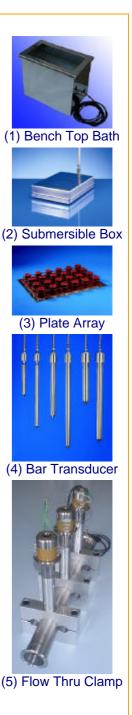
We need to learn more about your application to give better advice on the equipment that will best meet your needs. Please tell us: What kind of liquid material you wish to treat? Do you prefer to use the effects of even cavitation or a combination high acoustic power plus cavitation to break particles? Will you need to treat a large volume or small volume? Is your need for batch treatment or continuous flow?

Please visit our website for more details and have a look at our production line technology, or contact us directly with any inquiries.

Homepage: <u>http://www.mpi-ultrasonics.com</u> E-mail: <u>mpi@mpi-ultrasonics.com</u> <u>mpi@mastersonic.com</u>, <u>mpi@bluewin.ch</u>

Group A): High volumetric and low surface power density ultrasonic treatment: HVPD

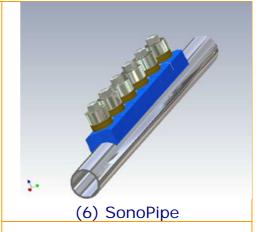
<u>Applications</u>: Ultrasonic cleaning in a liquid bath or special reactor cleaning applications, Sonochemistry, Electrochemistry, Surface treatment, Extractions, Nano technologies, Water treatment, Petrochemicals Cracking, Liquid food treatment, Degassing, Defrosting, Impregnation


System solutions may be grouped as follows:

<u>Ultrasonic Baths (1)</u>: Such systems are used when it is important to deliver uniform and homogenous ultrasonic energy over a large surface as found in standard bath systems. Using transducer elements with a large radiating surface the power density is usually on the order of 0.5 to 2 Watts per square centimeter. Such power is providing very good cavitation effects and uniform power distribution throughout the liquid bath or special cleaning chamber.

Through the use of <u>Submersible Box Transducers</u> (2), Plate Mount Transducers (3), Tubular Arrays, or a single-transducer with an <u>Integrated</u> <u>Resonating Bar</u> (4) or <u>Flow Thru Clamp-On tube</u> (5), we can provide standard bath systems or custom solutions that adapt to an existing cleaning or other liquid-treatment process. We offer both fixed frequency systems and wideband frequency systems using our unique MMM technology.

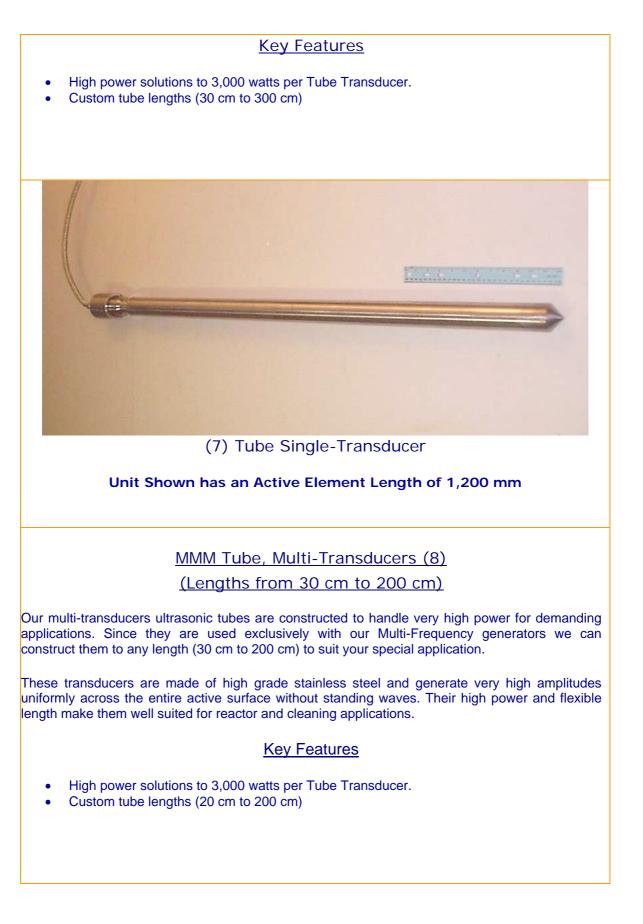
Advantages of our wideband MMM technology include:

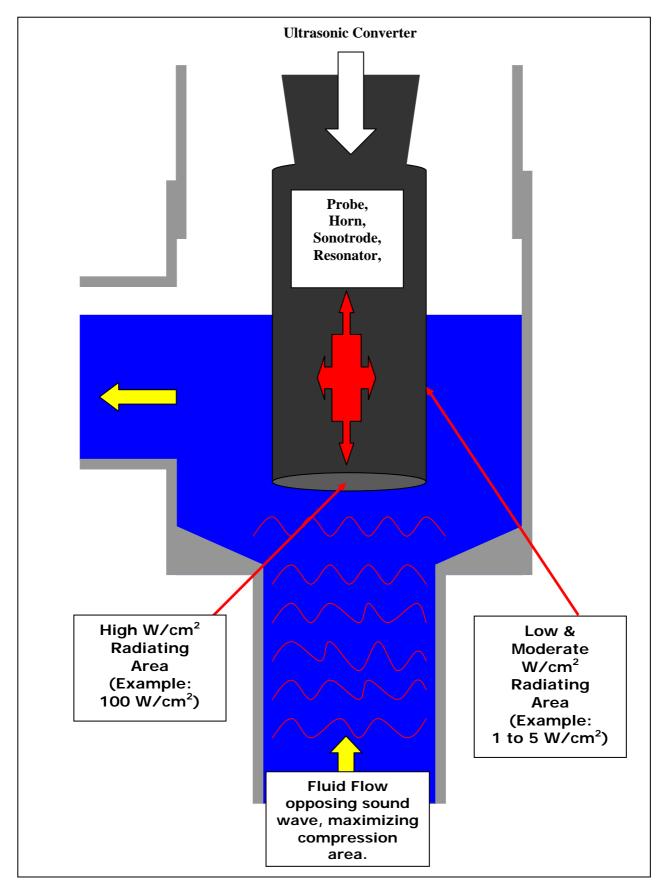

- Uniform distribution of ultrasonic energy throughout the bath.
- Wideband frequency modulations create a wide range of cavitation bubble sizes offering faster and more thorough cleaning of parts.
- Complex MMM modulations eliminate standing waves to improve parts cleaning and reduce damaging hot cavitation zones.
- Reduction of standing waves reduces transducer pitting and extends operational life.
- Faster liquid conditioning and degassing of fresh cleaning solutions.
- Adjustable inductive compensation, available on OEM modules, allows simple adaptability to 3rd party transducers and the possibility for field upgrades to existing systems.
- MMM generators can drive multiple high amplitude clamp-on transducers to make unique radial cleaning chambers of any diameter or length.

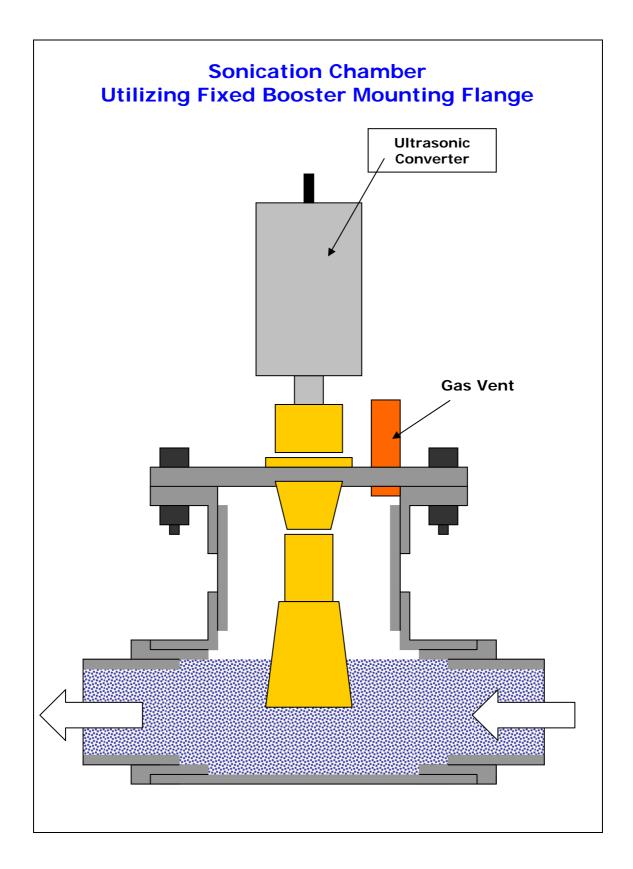
These unique ultrasonic reactors utilize a patent pending design that allows them to radiate highly efficient ultrasonic energy from all directions around the pipe (360°) when combined with our flexible Multi-Frequency generators. Since the transducers are externally mounted, only the interior of the pipe comes in contact with the treated material providing a clean and straight flow through path.

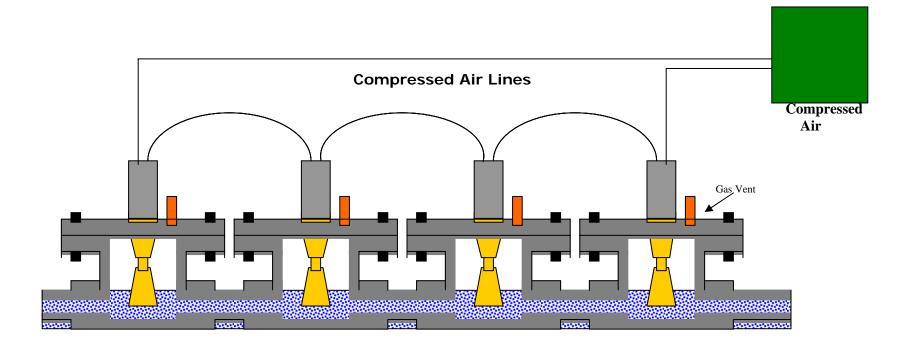
Key Features

- Scalable technology:
 - Accommodates various lengths of pipe and power.
 - \circ 200 W to 12,000 W
 - Allows easy adaptation to factory environment.
- Multi-frequency systems reduce excessive spot cavitation and internal erosion providing a very long component life. Eliminating internal sonotrodes means they do not need to be replaced when pitting and erosion make them unusable.
- 360° ultrasonic surface radiation provides thorough penetration of the treated material.
- Straight Flow-through Path provides simple and clean environment.




<u>Tube Single-Transducers (7)</u> (Lengths from 30 cm to 300 cm)


Our single-transducers ultrasonic tubes can be customized for any length that suits your application. The transducer bar element is made of high grade stainless steel and our multi-frequency generators provide uniform sonication across the entire active surface without standing waves. Their high power and flexible length make them well suited for reactor and cleaning applications.



Group B): High Intensity, Single-Frequency Probe Systems: HSPD

Multiple Converters Sonication Chamber

Multiple Converters Sonication Chamber Examples

Waste water treatment

Waste water treatment

High Power Fixed-Frequency Piston-Probe

- 20 kHz Fixed frequency
- 2,000 watts max
- Booster Ratio 1:2.0
- Full-wave Probe (titanium)
 - \circ Diameter = 50mm
 - o Length = 250 mm
- Very high axial energy produces strong cavitation and acoustic power for mixing, homogenization, flock & particle breakdown.
- New probe design also provides high radial energy for strong cavitation along the probe length.

Power Draw Test: In Water		
Probe Submerged 50% Amplitude 100% Amplitude		
Full submerge:	1,000 W	1,500 W
1/2 Submerge:	600 W	1,000 W
1/2 Submerge:	600 W	1,000 W
1/4 Submerge:	300 W	600 W

What to order (minimal order): Converter, Booster, Probe, and Power Supply

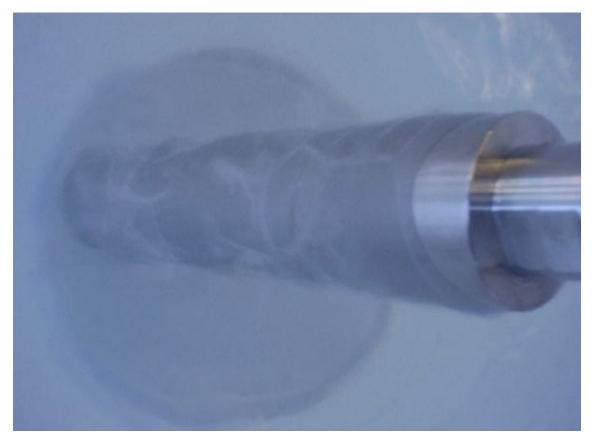
20 kHz Fixed frequency 2,000 watts max Booster Ratio 1:2.5 Fullwave Probe (titanium) Diameter = 50mm Length = 250 mm

Power Draw Test: In Water			
Amplitude at:	50%	100%	
Full submerge:	1,000 W	1,500 W	
¾ submerge:	1,000 W	1,500 W	
1/2 Submerge:	1,000 W	1,500 W	
1/4 Submerge:	1,000 W	1,500 W	

Notes:

Good probe radial cavitation shown on sides by aluminum perforation test for 30 seconds.

Good probe radial cavitation shown on bottom by aluminum perforation test for 30 seconds.


Good probe radial cavitation shown by visual with hand submersion.

inspection and by feel

Piston Probe Operating in Water

We took a standard fixed frequency generator and converter and tested with a high gain booster (ratio 1:2.5) and a full wave length titanium probe. The probe is about 250 mm (10 inches) in length and 50mm (2 inches) in diameter. Because of the larger diameter we are able to see excellent radial ultrasonic effects in addition to the axial effects on the probe tip.

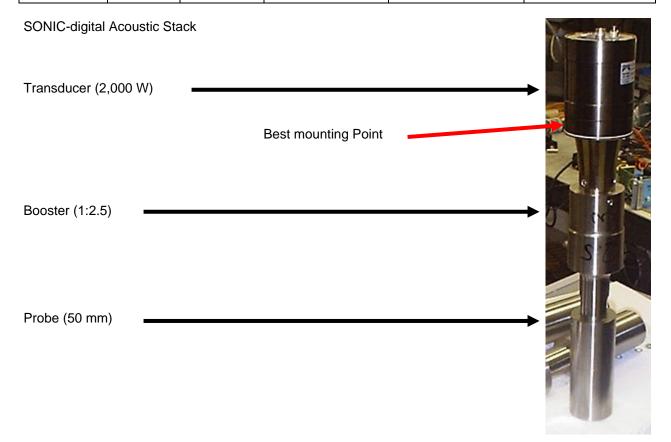
As is normally done with ultrasonic baths to test for cavitation we did a quick foil test to see if cavitation would penetrate. The results were very good for a 30 second test. This was a slightly thicker foil than normally used so we feel good about the results.

We also see clearly the cavitation areas streaming of the side of the probe. When you immerse your hand in the water you can feel strong cavitation.

This option allows you some good flexibility:

1.) You can submerse the probe directly into the treated liquid from an inch up to 9 inches. (You must not submerse above the probe top, this will cause a system overload)

2.) We can deliver from low to very high concentrations of power with this system (300 to 1,500 watts). If your liquid load is much denser than water you will draw even more power.


3.) You can also change the booster to lower the amplitude (1:2.0 or 1:1.5) or remove the booster to test lower power and amplitude results.

4.) We can also discuss optional probe diameters after you have tested in your liquid media. Smaller probes are possible but they will tend to give more axial and less radial energy. Larger probes become difficult to manage with an

unknown liquid density so we need to be careful about larger probes. They may in fact require a special factory set-up that is different from what the 50 mm probe requires.

Piston Sonicator, liquid processing performance: 2000 watt power supply

Amplitude / Power	Booster	Probe Percent Sub-merged	Circular Probe 25 mm diameter 120 mm length Power Output	Circular Probe 38 mm diameter 125 mm length Power Output	Circular Probe 50mm diameter 125mm length Power Output
100 %	Titanium 1:2.5	50 %	200 W	640 W	900 W
100 %	Titanium 1:2.5	90 %	300 W	780 W	1200 W

<u>High Surface Power Density Piston-Probe Systems</u> are also available for ultrasonic cleaning applications where it is desirable to deliver extreme or high ultrasonic power to a focused area. Probes may be designed to deliver maximum acoustic power to the tip face where amplitudes are greatest or we can offer probes providing a combination of radial energy along the sides of the probe in addition to high axial power at the end tip face. Probe tip surface power density can be in the range of 10 w/cm2 to hundreds of w/cm2. This high power ultrasonic energy from the probe tip gives the added benefit of strong acoustic streaming that is directed outward in a straight tight pattern. Advantages in cleaning applications include:

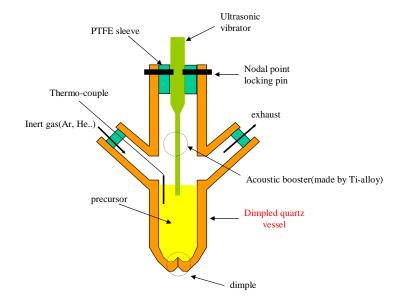
- Intense acoustical pressure at the probe tip generates a combination of ultrasonic cavitation plus strong mixing and streaming liquid currents.
- The strong acoustic streaming energy helps to break apart large flocks and surface contaminants allowing the combined cavitation to further act on smaller particles and exposed surfaces.

Strong acoustic streaming allows cleaning of problematic parts with very small holes or cavities. Gas bubbles trapped in small holes prevent entry of cleaning solution and hinder cleaning. Normal ultrasonic baths that rely only on cavitation may not drive air bubbles from small and long holes. Strong acoustic streaming acts to drive the air bubbles from the void allowing the cleaning solution to enter.

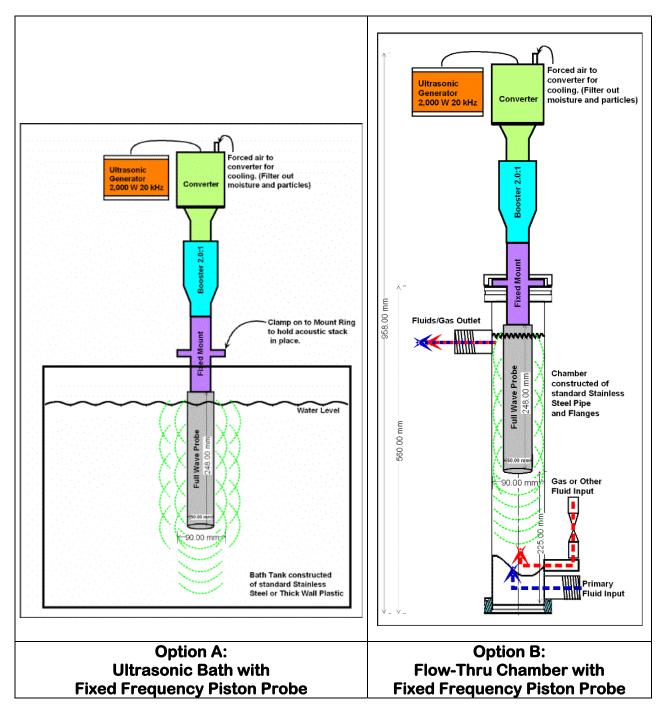
Ultrasonic Power Supplies for above-described singleprobe systems are well optimized to deliver very high ultrasonic energy into a liquid load, being fully protected against all accidental and over-loading situations.

Known restrictions related to single-probe systems:

- 1. Operating liquid temperature. Necessary to have forced cooling
- 2. Complexity regarding mounting, fixation, sealing
- 3. Sonotrode front-emitting surface-erosion caused by Intensive Cavitation and Sonication


(After 3 months of operation: 1000 watts, 20 kHz)

Possible applications of single-frequency, high intensity probe systems are:


- 1. Mixing and Homogenization of liquids
- 2. Cleaning and surface processing applications (deep holes cleaning)
- 3. Degassing (or gases injection if sonotrode is differently mounted)
- 4. Nano particles technologies
- 5. Accelerated diffusion, filtration
- 6. Extractions
- 7. Sonochemistry
- 8. Accelerated Polymerization (and in some cases de-polymerization)
- 9. Waste waters treatment
- 10. Liquids atomizing
- 11. Surfaces plating, metallization, coating
- 12. Welding...

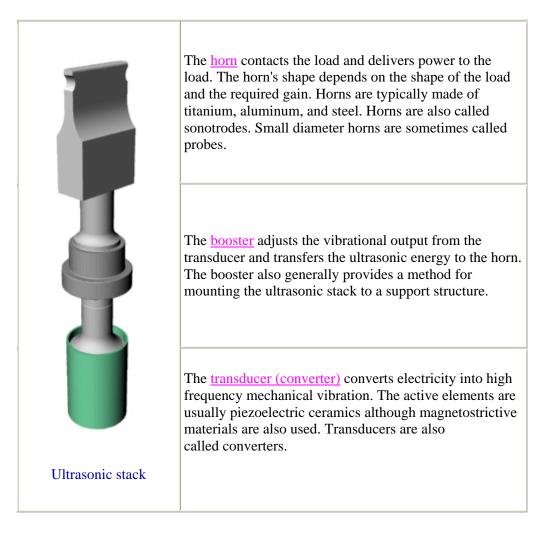
Application Example:

Single Probe (single-frequency) Ultrasonic Reactor

High Power Fixed-Frequency Piston-Probe ULTRASONIC REACTORS

High Power Converters for single probe systems

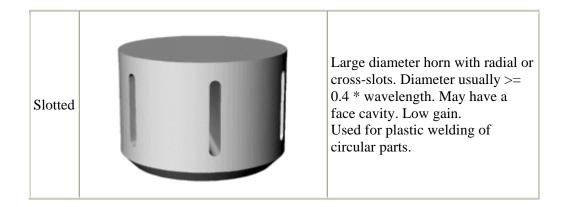
BOOSTERS AND SONOTRODES



Krell Engineering : Industrial Resonators

Industrial resonators deliver high energy density in order to substantially affect the materials with which they are in contact. Common uses include welding of plastics and nonferrous metals, cleaning, abrasive machining of hard materials, cutting, enhancement of chemical reactions (Sonochemistry), liquid processing, defoaming, and atomization. Usual frequencies are between 15 kHz and 40 kHz, although frequencies can range as low as 10 kHz and as high as 100 kHz.

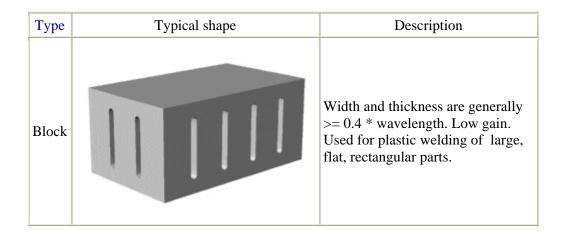
Krell Engineering can design many variations of the resonators shown below. (Note: not all resonators are shown to the same scale.)


A typical industrial ultrasonic stack consists of a <u>horn</u>, <u>booster</u>, and <u>transducer</u> (<u>converter</u>).

Horns

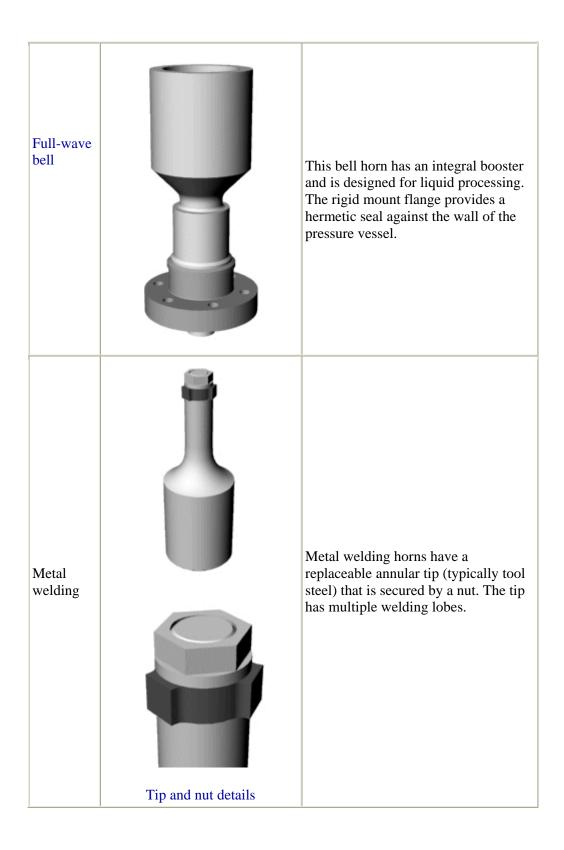
Cylindrical horns

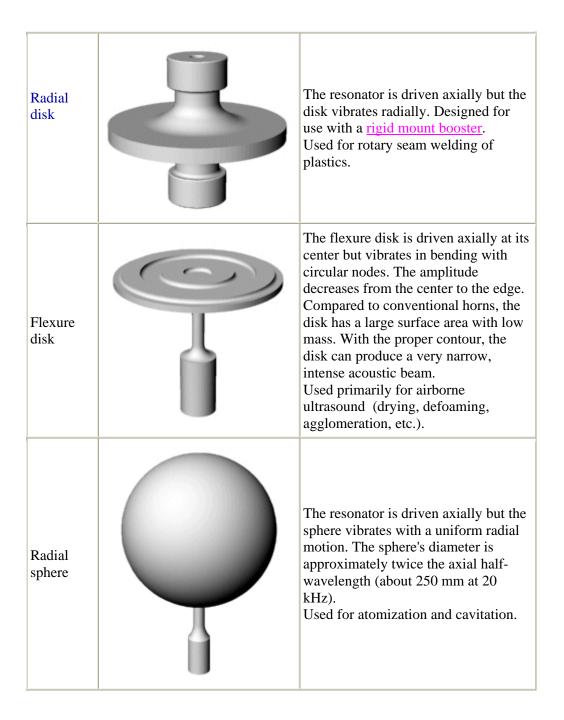
Туре	Typical shape	Description
Simple		Solid horns with a simple geometry (stepped, exponential, or catenoidal). May have a replaceable tip. Can have high gain. Used for plastic spot welding and inserting and liquid processing.
Spool		Solid horn with a spool shape and large diameter (up to 1/2 wavelength). Has good amplitude uniformity across the face (generally >= 90%) and relatively low stress. Face must be flat or have only minor relief. Low gain. Used for plastic welding of circular parts and liquid processing.
Bell		Unslotted horn with a cavity that extends to the node. Maximum diameter is generally <= 0.4 * wavelength. Moderate gain. May have considerable radial face amplitude. Used for plastic welding of circular parts and liquid processing.
	3/4 section	


Bar horns

A bar horn has a rectangular output face and is either unslotted or has slots in one direction only. The horn thickness is generally $\leq 0.35 *$ wavelength.

Туре	Typical shape	Description
Unslotted		Horn width is generally <= 0.4 * wavelength. Moderate gain. Used for plunge and scan welding and for some liquid processing applications (e.g., ultrasonic soldering).
Slotted		Horn width is generally >= 0.4 * wavelength. Special design techniques give optimum face amplitude uniformity. Moderate gain. Used for plunge and scan welding.


Block horns


A block horn has a rectangular output face and has slots in two perpendicular directions.

Special horns

Composite	High gain tip horns are driven by a common mother horn. Used for spot welding of plastics and for liquid processing.
Contoured	 A horn that has a complex, often irregular shape machined into its face. Used for plastic welding.

Boosters

Туре	Typical shape	Description
O-ring		The mounting ring is isolated from the booster body by O-rings.
Rigid mount		Because the rigid mount booster is constructed only of metal (no compliant elastomers), it has excellent axial and lateral stiffness. For additional stiffness a second mounting ring can be incorporated into a full-wave design. Used with heavy loads or where precise positioning is required and for rotating applications (e.g., seam welding; see <u>radial</u> <u>disk</u>). Also used where a hermetic seal at the mounting ring is required (e.g., for mounting through the wall of a pressure vessel); for an example, see the <u>full-wave</u> <u>bell horn</u> .

Transducers (converters)

Туре	Typical shape	Description
Transducer	J/4 section	Typical transducer with four piezoelectric ceramics, center-bolt design. The housing and electrode leads are not shown.

Also see resonator design by finite element analysis.